Drinking Water Quality and Compliance Town of Duck Lake Annual Notice to Consumers

Introduction

The Water Security Agency and the Ministry of Environment requires that at least once each year waterworks owners provide notification to consumers of the quality of water produced and supplied as well as information on the performance of the waterworks in submitting samples as required by a Minister's Order or Permit to Operate a waterworks. The following is a summary of the *Town of Duck Lake* water quality and sample submission compliance record for the January 1 2022 to December 31 2022 time period. This report was completed on June 27, 2023 Readers should refer to Water Security Agency's <u>Municipal Drinking Water Quality Monitoring Guidelines</u>, June 2015, EPB 502 for more information on minimum sample submission requirements and the meaning of type of sample. Permit requirements for a specific waterworks may require more sampling than outlined in the department's monitoring guidelines. If consumers need more information on the nature and significance of specific water tests, for example, "what is the significance of Selenium in a water supply", more detailed information is available from: http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/index_e.html.

Water Quality Standards Bacteriological Quality

Parameter/Location	Limit	Regular Samples Required	Regular Samples Submitted	# of Positive Regular Submitted (%)
Total Coliform	0 Organisms/100 mL	52	50	0
E. coli	0 Organisms/100 mL	52	50	0
Background Bacteria	Less than 200/100 mL	52	50	0

Water Disinfection -

Water Disin							
Chlorine Re	esidual in Distrib	ution System for Test	Results Submitte	d with Bac	teriological S	Samples	
	Minimum	Total Chlorine	Free Chlorine	# Tests	# Tests	# Adequate	
Parameter	Limit	Residual Range	Residual Range	Required	Submitted	Chlorine (%)	
Chlorine	0.1 mg/L free O	R					
Residual	0.5 mg/L total	0.46 - 1.66	0.15 - 1.21	52	52	100	
Water Disinfection - Free Chlorine Residual for Water Entering Distribution System from Waterworks Records-							
From Water	r Treatment Plan	t Records					
			Test Level	# Tests	# Test	s Not Meeting	
Parameter		Limit (mg/L)	Range	Performe	ed Requir	rements	
Free Chlorin	e Residual	at least 0.1	0.15 -1.21	365	C)	

A minimum of 0.1 milligrams per litre (mg/L) free chlorine residual is required for water entering the distribution system. Tests are normally performed on a daily basis by the waterworks operator and are to be recorded in operation records. This data includes the number of free chlorine residual tests performed, the overall range of free chlorine residual (highest and lowest recorded values) and the number of tests and percentage of results not meeting the minimum requirement of 0.1 mg/L free chlorine residual.

<u>Turbidity - From Water Treatment Plant Records</u>

Parameter	Limit	Test Level	# Tests Not Meeting	Maximum	# Tests	# Tests
	(NTU)	Range	Requirements	Turbidity (NTU)	Required	Performed
Turbidity	1.0	.07-2.24	4	2.24	365	365

Chemical - Health Category

All waterworks serving less than 5000 persons are required to submit water samples for SE's Chemical Health category once every 2 years. The Chemical Health category includes analysis for arsenic, barium, boron, cadmium, chromium, fluoride, lead, nitrate, selenium and uranium.

The last sample for Chemical Health analysis was submitted on June 2 2020. Sample results indicated that the provincial drinking water quality standards were not exceeded.

Parameter	Limit	Limit	Sample	# Samples
	MAC(mg/L)	IMAC (mg/L)	Result(s)	Exceeding Limit
Arsenic	0.010		0.2ug/l	* Results expressed

nalomethanes (THI THMs Limit (mg/L)	Ms)and Haloacetic A Sample Result (average)	cids (HAAs) # Samples Required	# Samples Submitted	
naiomethanes (THI	Ms)and Haloacetic A	cids (HAAs)		
		-		
0.02		U.4ug/I	M	
+	,			
			No. of the last of	
0.01		.0010mg/l		
1.5		.17mg/l	fluoride or nitrates	
0.05	<	0.0005mg/l	concentrations of	
1.0	-		those with elevate	d
1.0	_		water supplies or	
0.005	~	0.00001mg/l	fluoridate drinking	
0.01	2		waterworks that	
5.	0 0	.02mg/l		
1.0	O	.32mg/l	as average values	i
	5. 0.01 0.005 1.0 1.0 0.05 1.5	5.0 0 0.01 0.005 1.0 1.0 0.05 1.5 0.01 45.0 0.01	5.0 0.02mg/l 0.01 0.005	5.0 0.02mg/l for communities of waterworks that 0.005

Parameter	THMs	Sample	# Samples	# Samples
	Limit (mg/L)	Result (average)	Required	Submitted
Trihalomethanes Haloacetic Acids	0.1 0.08	0.073	4 (1 every 3 months) 4 (1 every 3 months)	0

General Chemical

	Aesthetic	Sample Results	# Samples	# Samples
Parameter	Objectives * (mg/L)	(average)	Required	Submitted
Alkalinity	500	389 mg/l		
Bicarbonate	No Objective	474 mg/l		
Calcium	No Objective	101 mg/l		
Carbonate	No Objective	less than 1		
Chloride	250	9 mg/l		
Conductivity	No Objective	695 us/cm		,
Hardness	800	338 mg/l		
Magnesium	200	21 mg/l		
PH	No Objective	7.78 ph units		
Sodium	300	15 mg/l		
Sulphate	500	21 mg/l		
Total dissolved		•		
Solids	1500	_442 mg/i		

All waterworks serving less than 5000 persons are required to submit water samples for SE's General Chemical category once every two years if a ground water source and once per three months every second year if a surface water or blended surface/groundwater source. The General Chemical category includes analysis for alkalinity, bicarbonate, calcium, carbonate, chloride, conductivity, hardness (as CaCO₃), magnesium, sodium, sulphate and total dissolved solids.

The last sample for General Chemical analysis was required on and submitted on June 2 2020.

*Objectives apply to certain characteristics of or substances found in water for human consumptive or hygienic use. The presence of these substances will affect the acceptance of water by consumers and/or interfere with the practice of supplying good quality water. Compliance with drinking water aesthetic objectives is not mandatory as these objectives are in the range where they do not constitute a health hazards. The aesthetic objectives for several parameters (including hardness as CaCO₃, magnesium, sodium and total dissolved solids) consider regional differences in drinking water sources and quality.

More information on water quality and sample submission performance may be obtained from:

Town of Duck Lake Post Office Box 430 Telephone Number / Facsimile Number 306-467-2277 / 306-467-4434 E-mail address - townducklake@sasktel.net

